報告題目:Unconditional Stability and Convergence of Crank-Nicolson Galerkin FEMs for a Nonlinear Schroedinger-Helmholtz System
主 講 人:王 冀 魯
單 位:北京計算科學研究中心
時 間:12月23日9:00
ZOOM ID:210 089 8623
密 碼:123456
摘 要:
The paper is concerned with the unconditional stability and optimal $L^2$ error estimates of linearized Crank-Nicolson Galerkin FEMs for a nonlinear Schroedinger-Helmholtz system in $\mathbb{R}^d$ ($d=2,3$). By introducing a corresponding time-discrete system, we separate the error into two parts, i.e., the temporal error and the spatial error. Since the latter is $\tau$-independent, the uniform boundedness of numerical solutions in $L^{\infty}$-norm follows an inverse inequality immediately without any restrictions on time stepsize. Then, optimal error estimates are obtained in a routine way. Numerical examples in both two and three dimensional spaces are given to illustrate our theoretical results.
簡 介:
王冀魯,北京計算科學研究中心特聘研究員。2015年在香港城市大學獲博士學位,2016-2018年在佛羅里達州立大學從事博士后研究工作,2018-2019年在密西西比州立大學擔任訪問助理教授。她的研究課題主要集中在偏微分方程數值解,具體包括關于淺水波方程、多孔介質中不可壓混溶驅動模型、薛定諤方程以及分數階方程有限元方法的誤差估計。